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The phase transformation from tetragonal to cubic for perovskite BaTiO3 containing Dy203 
and Ho203has been studied by X-ray diffraction and infrared absorption spectra. The high- 
angle reflections (41 1) and (422) from the cubic phase give a set of doublets of the two 
wavelengths K=, and K=2. In the tetragonal structure each doublet is split into a set of partly 
overlapping doublets. The high broadening of absorption bands in the infrared spectra of 
heavily doped samples is attributed to symmetry changes from tetragonal to cubic. 

1. I n t r o d u c t i o n  
The properties of ferroelectric ceramics in a given 
system are largely determined by the method of pre- 
paration, by type and concentration of dopant, and by 
the sintering temperature used. In a certain composi- 
tion, such properties as insulation resistance, break- 
down voltage and mechanical hardness are greatly 
influenced by phase structure changes at room tem- 
perature. Many modifications of BaTiO 3 ceramics 
have been developed using several different effects and 
oxide additives 1-1 3]. However, in these reports, very 
little is said about the effect of additives on the struc- 
tural changes of the perovskite BaTiO3 lattice at room 
temperature. 

Yamaji et al. [4]  has studied the effect of Dy doping 
(concentrations up to 1.2 at %) and sintering para- 
meters on the dielectric properties of BaTiO 3 ceram- 
ics. Tennery and Cook [5-] have investigated the effect 
of 0.005~0.003 mole fraction of H o 2 0  3 on some phys- 
ical properties of BaTiO 3 ceramics. They stated that 
no deviation from the normal room temperature te- 
tragonal system is observed. 

It is clear from these data, that no systematic study 
regarding the effect of Dy20  3 or H o 2 0  3 doping (con- 
centrations up to 6 tool %) on the structural changes 
of BaTiO 3 at room temperature have been reported. 
This is the subject of the present investigation. 

2. Experimental procedure 
Samples were prepared following the usual ceramic 
technique described in I-5, 6]. The starting materials 
were BaCO3, TiO 2 and Dy20  3 or H o 2 0  3 (Merck). 
Additives of Dy20  3 or H o 2 0  3 were varied from 0.01 
to 6 tool % in BaTiO 3. The raw materials were mixed 
by dry and wet mixing and the mixture was calcined at 
1000 ~ for 3 hours. The pressed discs were sintered at 
1300 ~ for 2 hours. X-ray powder diffraction patterns 
were taken by Ni filtered CuK~ radiation using a 

philips X-ray diffractometer. For peak profile analysis, 
the speeds were chosen to give a good resolution of 
4 cm per degree of Bragg angle. The high-order reflec- 
tions at 88 ~ to 161.5 ~ were recorded to measure 
the lattice constants. 

The method of Rachinger was used to derive the 
position of the unresolved lines K~I and Ka2 [7] and 
the lattice constants were calculated by the extrapola- 
tion method, using the functions 1/2 [(cos / 0/sin 0) 
+ (cos 2 0/0)3. 

The infrared (IR) absorption spectra of the prepared 
samples were measured at room temperature from 
200 2000 cm-- 1. The sample concentration was 3 mg 
of BaTiO3 mixed with 700 mg KBr powder and press- 
ed into discs. The spectra were recorded employing a 
Beckman instrument G M B H  Munchen-Bel Nachbes- 
tellung spectrophotometer. 

Results and discussion 
3.1. X-ray diffraction studies 
X-ray diffraction analysis shows that the addition of 
Dy20  3 or Ho203 with concentration up to 6 mol % 
gives no additional lines representing either dopant or 
any other unwanted phases such as Ba2TiO4, 
BaTi30 7 or BaTi4Og. A similar conclusion was ob- 
tained by Eror and Smyth [8], for BaTiO 3 with 
Ra/O3 additions of concentration up to 20 at %. 

To test the effect of Dy20  3 or H o 2 0  3 additions on 
the crystal structure of BaTiO3, the group of reflection 
planes (1 1 4) and (224) were chosen to study their 
splitting. These groups of lines are very sensitive to the 
different structure modifications of BaTiO3 [9]. The 
cubic structure gives a set of doublets formed by 
reflections from the same phase of the two wave- 
lengths K~x and K~2. In the tetragonal structure each 
doublet is split into a set of partly overlapping doub- 
lets. In Figs. 1 and 2, an example of these high-angle 
reflections, i.e., (2 2 4)~1, (2 2 4)~ 2, (4 2 2)~1, (4 22)~2, 
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Figure l Diffractometer tracing of the components of the 
group of 4 2 2 lines of BaTiO a ceramics with different Dy203 addi- 
tions, (a) undoped BaTiO3, (b) + 0.01 mol %, (c) + 0.1 mol %, 
(d) + 0.5 mol %, (e) + 2 m o l % , ( f )  +6mo1%.  
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Figure 2 Diffractometer tracings of the components of the 
group of 4 1 1 lines of BaTiO 3 ceramics with different H020 3 addi- 
tions. (a) undoped BaTiO3, (b) + 0.01 mol %, (c) + 0.1 mol %, 
(d) +0.5mol%,(e)  + 2 m o l % , ( f )  +6m01%.  

(114)~1, (114)~2, (411)~ 1 and (411)~2 of undoped and 
doped BaTiO 3 samples are given. It is clear from these 
peak profiles that the splitting of the doublet (422) 
and (411) is still present for all doped samples except 
those containing 6 mol % Dy203 or  H 0 2 0 3 .  This 
indicates that specimens doped with 6 mol % Dy203 
or Ho203 become nearly cubic. TO confirm this view, 
calculations of lattice parameter values a and c corres- 
ponding to tetragonal or cubic systems were carried 
out. At least eight peaks from high angle reflection 
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Figure 3 Lattice constants of BaTiO3 as a function of Dy203 
dopant concentration. 
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Figure 4 Lattice constants of BaTiO 3 as a function of Ho20 3 
dopant concentration. 

lines in which K~I, and K~ 2 are split were measured 
for each point. The results of lattice parameter meas- 
urements a, c, c/a and unit cell volume, V, are shown 
in Tables I and II and represented in Figs. 3, 4, 5 and 6. 

It is clear from these results that the values of the 
lattice parameters of tetragonal undoped BaTiOa are 
in close agreement with those obtained by other au- 
thors [10, 11]. The great similarity between the values 
of a, c, c/a and V of the two types of dopant Dy and 
Ho is expected since the ionic radii of both dopants 
are very close, namely 0.099 and 0.097 nm for Dy 3 + and 
Ho 3 +, respectively. Also, it can be observed from Figs. 
5 and 6 that there is a fluctuation in the value of the 
unit cell volume (V) of BaTiO 3 due to Dy203 or 
H o 2 0  3 additions. This might be attributable to the 
different possibilities of substitutions of dopant in 
cation sites of BaTiO 3. These can be summarized as 
follows. 

(i) The replacement of a Dy 3+ ion (ionic radius 
0.099 nm) in a Ba 2§ (ionic radius 0.135 nm) site 
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TABLE I. Symmetry, lattice parameters and unit cell volume of specimens of BatiO 3 doped with different concentrations of Dy203. 

Content of Symmetry a (nm) c (nm) c/a V (~3) 
Dy203 
(mol %) 

0 Tetragonal 0.39910 0.40608 1.0t74 64.680 
0.01 Tetragonal 0.39935 0.40480 1.0136 64.557 
0.I Tetragonal 0.39905 0.40425 1.0130 64.373 
0.5 Tetragonal 0.39915 0.40445 1.0132 64.437 
2 Tetragonal 0.39970 0.40345 1.0093 64.455 
6 Cubic 0.39985 0.39985 1 63.928 

TABLE II Symmetry, lattice parameters and unit cell volume of specimens of BaTiO 3 doped with different concentrations of Ho20 3. 

Content of Symmetry a (nm) e (nm) c/a V (~3) 
HO203 
(mol %) 

0 Tetragonal 0.39910 0.40600 1.0174 64.680 
0.01 Tetragonal 0.39938 0.40466 1.0132 64,545 
0.1 Tetragonal 0.39895 0.40396 1.0125 64.294 
0.5 Tetragonal 0.39912 0.40438 1.0t31 64.416 
2 Tetragonal 0.39986 0.40383 1.0099 64.567 
6 Cubic 0.40005 0.40005 1 64.024 
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Figure 5 Effect of Dy203 additions on the unit cell volume of 
BaTiOa ceramics. 
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Figure 6 Effect of Ho2O 3 additions on the unit cell volume of 
BaTiO 3 ceramics. 

should lead to a shrinkage in the unit cell 
volume of BaTiO3. 

(ii) The substitution of a Dy 3+ or H a  3+ ion in- 
stead of the Ti 4+ ion (ionic radius 0.068 nm) 
can increase the unit cell volume. 

(iii) The vacancy population in the Ba 2 + site caused 
by the dopants, results in a shrinkage of the 
unit cell volume, where, for two Dy 2+ or Ha  3 + 
ions, one vacancy is needed to preserve elec- 
troneutrality [12]. 
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A sharp decrease in the values of c/a and V of 
samples doped with 6 mol % is observed (Figs. 3-6). 
This may be explained as a phase transformation from 
the tetragonal to the cubic form at room temperature. 
This result is in agreement with work reported by 
Hanafi et al. [9] for BaTiO 3 doped with La20  3 and 
YbzO 3. 

3.2.  Inf rared  a b s o r p t i o n  s p e c t r a  
The infrared absorption curves for undoped BaTiOa 
and for BaTiO3 doped with Dy/O3 or H a / a 3  are 
shown in Figs. 7 and 8. All the spectra have one feature 
in common: they exhibit two main absorption bands 
at 375 cm-1 and 530 cm-1.  According to Last [13], 
the bands at 375 (vl) and 530 (v/) are due to bending of 
Ol l -Ti -O ~ and stretching of T i O~ vibrations in the 
BaTiO 3 lattice, respectively. The band appearing at 
1670 c m -  t in the investigated samples corresponds to 
the hydroxyl (OH) impurities [14]. 

The effect of doping on the infrared absorption 
spectra is to produce a slight shift in the peak positions 
of vl and v2. An increase in the line half-width of the 
absorption band (vl) with increased dopant  concen- 
tration is observed and it changes to a plateau for the 
samples doped with 6 mol % of DyzO 3 or H0203. 
X-ray studies show a sharp decrease in the unit cell 
volume of BaTiO3 (Figs. 5 and 6) for these heavily 
doped specimens. 

This high broadening of the band v I is most prob- 
ably due to a combination of factors: 

(i) high degeneracy of the vibration state of the 
molecule which is related to symmetry changes; 

(ii) thermal broadening of the lattice dispension 
band; 

(iii) geometrical scattering by the powder samples 
[15]. The last factor, however, is neglected since 
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Figure 7 Infrared absorption of BaTiO 3 samples with different 
additives of Dy20 3 (a) undoped BaTiO 3, (b) + 0.01 mol %, (c) 
+ 0.1 mol %, (d) + 0.5 mol %, (e) + 2 mol %, (f) + 6 tool %. 
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Figure8 Infrared absorption of BaTiO3 samples with different 
additives ofHozO3.(See  Fig. 7 ~rkey . )  

the same conditions of measurement were used 
[14]. 

X-ray analysis indicated that a solid solution is 
formed between BaTiO3 and Dy20  3 or H 0 2 0  3 in 
which Dy 3+ or Ho 3+ may occupy Ba 2+ and/or Ti 4+ 
sites in BaTiO3. In the perovskite structure of BaTiO3 
the nearest distance at room temperature between 
Ti 4+ and 0 2 -  along the c-axis is 0.187 nm, and between 
Ba 2+ and 0 2 -  is 2.79 ,~. Thus, in BaTiO 3 the inter- 
action between Ti 4+ and 0 2- is stronger than that 
between Ba 1+ and 0 2- as the nearest distance is 
smaller and the titanium ion has four positive charges 
while barium has two [16]. For  the sample doped with 
Dy20  3 or H0203, the existance of Dy 3+ (ionic radius 
0.098nm) or Ho 3+ (ionic radius 0.097rim) at the Ti 4+ 
sites (ionic radius 0.068 nm), increases the nearest distance 
between Dy 3+ and O z-. Also the forces between 0 2 -  
and the trivalent cations Dy 3+ or Ho 3 + are less than 
the forces between O z- and the tetravalent cations 
Ti 4+. Thus, it is reasonable to expect that the differ- 
ence in broadening of the band v I is due to changes in 
the forces between 0 2- ions and different doped 
cations in BaTiO 3, in addition to the differences in the 
distance between the doped cations and O z-  ions. A 
similar treatment is reported by Last [13] on the 
perovskites MgTiO 3 and CdTiO 3. 

A gradual increase in the concentration of dopants 
D y 2 0  3 or H o 2 0  3 (at 6 mol %) in BaTiO3 is accom- 
panied by a change in the crystal structure of BaTiOa 
from tetragonal to cubic at room temperature (see 
Figs. 3 and 4). This can lead to a slight distortion of 
octahedral symmetry which plays the major role in the 
high broadening for heavily doped specimens. 
Baraclough et al. [17 ]  considered that any slight 
distortion from tetrahedral symmetry can lead to 
broad bands in the infrared spectra, as is actually 
observed. 
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